
SAND--90-0030C

DE90 005326

MERLIN:
A SUPERGLUE FOR MULTICOMPUTER SYSTEMS

Creve Maples * Larry Witrie + ,
and

Sandia National Laboratories Computer Science, SUNY
Albuquerque, NM 87185 Stony Brook NY 11794-4400

ABSTRACT

Merlin is a memory based, interconnection system designed to provide very high-performance

capability in a distributed multicompvter environment. By using dynamically mapped reflective

memory operations, the system creates a virtual memory environment which permits users to

utilize both local and shared memory techniques. This mapped virtual memory approach

permits selected information to be. shared at high speeds and with relatively low latency. There

is no software involvement in the actual sharing of information and the system autom_ffically
overlaps computation and communication, to the extent possible, on a word-by-word basis.

Memory-to-memory mapping allows Merlin to provide a uniform programming environment

which is independent of interconnection topology, processing elements, and languages.

1. Introduction

As physical limitations (such as the speed of light) make it progressively more difficult to

construct faster and faster supercomputer uniproce._sors, "_nterest has begun to focus more

heavily on the potential of parallel processing in solving the computational challenges of

tomorrow. The rapid advances in microprocessor technology (with 100 MIP processors

anticipated within a few years) make the idea of multi-micro systems particularly attractive,
both in terms of performance and cost.

Attempts to develop multi-micro architectures have thus far focused primarily on either of two

approaches - tightly coupled, shared memory systems, or loosely coupled, message passing

systems. Shared memory systems must deal with the difficult problem of memory contention.

This problem has been architecturally addressed in several ways: memory interleaving (e.g.

Clay X-MP, etc.); memory interconnection netwo_s (e.g. NYU Ultracomputer [1], IBM RP3

*This work was performed at Sandia National Laboratories and supported by the U.S.
Department of Energy under contract number DE-AC04-76DP00789.

+This work has been supported in part by National Science Foundation grants for CER MASTERDCS83-19966, research CCR87-13865, equipment CCR87-05079; by National Aeronautics
And Space Administration grant NAG-I-249; and by Office of Naval Research grant N00014-

88-K-0383. _:_
:,t:,_, i_j,_ OF i-Ptl_;[20(5LiMt:N F IS LIINLIN,III _ID

1990008050

[2], etc.); and distributed caching (e.g. Sequent, Encore, Alliant, etc.). Combinations of these
techniques have also been used to further minimize shared memory contention problems (e.g.
Cedar's use of caching and networking [31, IBM 3090's use of interleaving and caching).

Communication, and attendant latency, has been a primary limiting factor in the utilization of

message based machines such as the Cosmic Cube [4], N-Cube, Intel iPSC, etc. It should be
noted, however, that performance limitations faced by such architectures are not simply due to
the communication bandwidth of the system. The software overhead involved in handling
messages (e.g. operating system calls, message formatting, transmission protocols, interrupt
handling, moving information into and out of buffers, etc.) is frequently the dominating factor
in determining system latency [5]. Indeed message based architectures are often only

recommended for problems with low interprocessor communication requirements [6].

Some hybrid architectures have attempted to combine the two approaches. The BBN Butterfly,
for example, offers a global address space but the physical memories are separate and locally
attached to each processor [7]. A delay therefore occurs when a processor addresses any
nonlocal memory location. The design of the Denelcor HEP [8] attempted to hide such latency

by overlapping the memory access time with the execution of other instruction streams.

Operational shared memory systems have thus far only been able to successfully support a few
hundred processors, at most. Message passing systems with thousands of processing
elements, are, however, currently available. Because of the relative advantages of each

approach, agreement as to which is 'better' (i.e. easier to program, more general, offers the
highest performance, etc.) still remain largely unresolved.

Current research in multicomputer systems is primarily focused on extensions of these two
basic architectural approaches. At Stanford, fcr example, research is underway to develop a
shared memory system (DASH) utilizing distributed, directoried caching [9]. ']he Nectar
Project at CMU [10] is developing an efficient message based system to support a hetrogenous
processing environment which features low-latency, high bandwidth communication and
which is scalable. MERLIN (MEmory Routed, Logical Interconnection Network), however,

provides a different pers.r_ctive of processor-memory space.

2. ConceDlual and Pro2rammine Model

A MERLIN environment pictures the world as consisting a collection of processing elements
(not necessarily identical), each of which is independent and has its own local memory. It also
assumes the existence of a large, separate (virtual) memory space to which each processor is
connected. In SIMD operation, each processor behaves completely independently, and has no
effect on the operation of any other processor in the system.
If a user desires to run a problem in parallel, a set of cooperating tasks are loaded onto a

selected set of processors (typically allocated by the operating system). During the execution
of the problem, various tasks may need to share or exchange information. Some information
may need to be shared globally, for example, while other data may only need to be shared with
a subset of the processors. To accomplish this sharing, a processor may request that the

1990008050-002

system allocate a shared virtual memory region, of the appropriate size, and map the
processo, 's corresponding local memory region in'.o this virtual space.

Cooperating 1Processors
Virtual

Local Loc Mere

Memory •-" "'_, map 1I s in .*."
i e /cca/ i
#

_'.. , , ,.'. addtoss
""_hsJ_l ' .".'"

• "" Iregion _ g/obml _ .'o" 1
.," shared • i

•A _** region :
q_Qbt "O.Q

0 _'.°'°°.o
map

_dross _ "'...
OUt

p f i

Processor 1II II .

I

(writing) (reading)

Figure I - Progranm',er's model of shared memory
operation in a Merlin system.

Once a global virtual region is allocated, it can, from a programming perspective, be treated as
if it were a physically shared memory. While write operations to all other locations are stored
locally, writes to a shared region appear to be stored in virtual memory. Other processors
desiring access to this region (read, write, or read-write) simply have the operating system map
an appropriately sized region of their local address space into the desired global virtual region.

The programmer's model of the operation of shared virtual memory is illustrated in Figure 1.
In this example, the address of every store operation to processor l's memory is used at an
index to a local (output) mapping table. If an entry is found in the table, the address has been
defined as a virtual address, and the table entry is used to translate the address to it's global
virtual equivalent. From a programming perspective, the information associated with this
address is then stored in global virtual spac,. (see, however, the section on Architecture for
what actually occurs). In this conceptual model, He reverse mapping processes would occur
when other processors attempt to read a shared address.

It is clear from figure 1 that many different types of shared regions could exist either between
cooperative processes working on a single task, or between processes working independently
on other tasks in the system. The limitation would simply be on the amount of global virtual
address space available. In a multitask environment, a particular process does not have to be
executing, or even resident, to utilize shared memo,'y, As long as the shared region exists

1990008050-003

information can be ulxlamt and messages received without active involvement of a process.

Nora also that as long as the cooperating processes have agreed on how the shared information

k_being stored in global virtual rmmory (e.g. !EEE floating point, 32-bit integer, etc.) the
processors on which they execute do not have to be _dentical (insm_fion set, cycle time,
architecture, etc.). Conceptually, the global memory itself serves as a buffer which permits
various components of the system to operate at different speeds.

Thus, in this programming model, a set of processes could elect, at one extreme, to share all
data memory and execute in a global memory environment (e.g. Cray X/MP). Tasks operating
in such an environment would typically require the use of locks, semaphores, etc., to handle
synchronization issues. It is assumed that the virtual memory system will provide support for
such traditional synchronization control mechanisms This does not necessarily imply,
however, that such capabilities would also exist for a processor's l_al memory (see also the
Synchronization section).

In the opposite extreme, a task could be established which viewed the world as consisting only
of local memory processors interconnected t_y, for example, a hypercube- type of nearest
neighbor communication system. For this situation, a separate shared memory region could be
created for each processor which spanned only the logically nearest neighbors. Thus when a
processor wished to 'send a message' to its neighbors, the information world simply be copied
into the shared region. This is not necessarily the most efficient way to accomplish this task on
a Merlin system, but it would serve to execute the model, potentially including support for
hypercube message routines to permit such code to be run directly.

2.1 Comi_arison with Models of Other Multicomputer Systems.

Note that the physical communication network in a Merlin environment plays no role in
logically programming a hypercube, or any other type of interconnection topology which might
be useful to a problem. Indeed one could easily add a global memory region to the previous
hypercube example or create other regions for specific purposes (e.g. the logical equivalent of a
doubly rooted binary tree for searching).

The use of memory based interconnections eliminate the software involvement and overhead
which exists in message passing systems. After a shared region is defined, there is no further
software involvement in its use (e.g. system calls, subroutine calls, etc.). Since all shared
memory operations involve individual "w,ardpackets" (data and address), there are no message
protocols involved and no optimal message sizes.

By using local memory as much as possible for storage operations (instruction and data) and
utilizing shared memory only in user def'tned areas, Merlin can reduce memory access conflicts
which occur in actual shared memory systems (e.g. Cray X/MP). It's operation is also
conceptually differen: _hancached based, shared memory arci'_itectures. Such syslems operate

on a 'demand' basis. If information required by a program C not reside init_cache, the

data must be located in the system and moved into the local cache (with appropriate action
being taken to preserve cache coherence in the event that other copies of the same data are also
in use). Merlin is an ,,nt_,._pa,,,r) system. By zsse.,-ting that a region i_ shared, one is

implicitly stating that processes attached to this region will, at some point, require access to the
information it contains. Armed with this program supplied, preknowledge, Merlin attempts to

reflect any change to information in the region, word-by-word, as fast as it becomes available.
In this manner it is anticipating the requirement for the information and may be able to supply it
before the actual need exists.

Cooperating
Interconnection .E

Local

map
Memory in

mirrored

region

mapmap
in words out •

: muted •

:
• global
: address mapin

map
out beat _i

i

Processor1 map
(writing) out

(reading]

Figure 2 - Memory muting and reflective memory
operation in a Merlin system.

3. System Architecture

Developing a conceptual programming model and designing an architecture to realize it, are
very different problems. The reality of architectural design, even at a high level, make practical
trade-offs inevitable. These, in turn, impact the programming model, u_ually negatively.
Clearly in the conceptual model described previously, a major problem would exist in the

implementation of the global memory system. Such a memory would have all the problems of
any shared memory system - access conflicts (even though the conceptual model reduced the
frequency of shared memory access), potentially high memory latency, physical siz_ limitations
- which can significantly reduce the overall performance of the system.

Although useful as a programming concepL the global memory does not need ,o actually exist.
In fact by eliminating it, most of the problems associated with shared memory can be avoic',;d.
The global shared memory, illustrated in figure 1, in reality serves as a communication system
between sets of processes. It should therefore be possible to replace it with an interconnection

1990008050-005

network, as shown if figure 2. Such a network would have to transmit "word packets", as
opposed to messages or DMA transfers, in order to support th_ operation of the conceptual
model.

3.1 Reflective Memory Operation

Rather than storing shared information in a separate global memory, it can be stored in the
physical memory of each processor. As shown in figure 2, this space already exists, by
definition. In order to maintain the programming model of a shared memory,, any change to a
shared location must be reflected to all logically equivalent locations in the memory of
processors which share this space. Shared regions are thus duplicated (as long as they are
active) in the physical memory ofaU associated processors.

This use of reflected or mirrored memory considerably simplifies the architectural design,
removes some potential bottlenecks, and generally enhances system performance. As illustrated
in figure 2, all write operations to shared regions (solid lines) are both stored locally (as would
normally occur) and broadcast, by the interconnection network, to the logically equiva!ent
shared location in the memory of every participating processor, All read operations (dashed
lines) occur locally from the processor's own memory (or cache). A simple, non-mapped,
reflective memory system, of fixed size, developed by Gould, demonstrated efficient, high
performance operation [11].

Replicating shared regions in each processor's memory may appear cosily but it is mitigated by
three factors: 1) the shared regions and their size is completely controlled by each user
program; 2) maintaining multiple copies of the regions increases system performance and
scalability (there are no delays or contention problems on shared read operations); and 3)
technologically, mer",ory chips will continue to get denser and cheaper. Note that both
message based and shared memory architectures (which use distributed caching) maintain
multiple copies of data.

A serious problem for all these architectures is latency reduction -.if a process requires data
which is not available locally, but is available elsewhere, how long is the delay until it is
received? In a message based system, this would be the time necessary for the sender to
transmit the information to the requester, and may also include the time necessary to notify the
sender that the information is needed. In a distributed cache system, the need for the data
would be signalled by a cache miss. A correct copy of the information would then be located
in the system and the transferred into the requestor's cache In a Merlin system, a request for
information is unnecessary. Since the need for the information has been pre-established, if it is
available anywhere it will either be present in the processor's local memory or it is already en
y,'oute.

By dealing with :,ndividual "word packets", Merlin further reduces latency by automatically
overlapping computation and communication to the fullest extent possible. Every word written
to a shared region is broadcast _ it is being locally stored. Since the transmission of shared

1990008050-006

1990008050-007

data is completely independent of the local processor, it occurs in parallel with the.processor's
continuing computations (wlhioh n-aay,for example, be the computation of the next shared

1, J
I,J.U W I Iquantity). Neither writing nor reaumg shared data slows the operation of a proccssor,

since both operations actually occur normally in the processor's own memory (see also
Section 4, on Synchronization).

3.2 Management of Global Virtual Memory

The functional operation of a Merlin network, and the management of the virtual memory

system, has been discussed elsewhere [12]. Figure 3 gives a schematic picttare of data and
control flow in a single processor Merlin interface. T.nthis conceptua! representation, the
processing element (PE), its memory, and cache (if present) are ._hown on the left. To
interface the PE to a Merlin environment, it's memory bus is "Td" so that a duplicate copy of

all store operations is sent to an independent Merlin communication card.

The communication card has two parts: a proce._sor interface and an interface to the
interconnection network. The first par_u'anslatcs local physical addresses (LPA), which are
associated with shared regions, into global v;.rtualaddresses (GVA), and vice versa. A copy of
the PE's memory stores are xeparated ir_toaddress and data lines. A masked portion of the
LPA is used as the index into r_hardware table called the Output Map. Entries in the map are

made by the PE when a mapp,'.d region is established. If no entry is present for a LPA, no
further action is taken and ,he address (with it's associated data) are ignored.

If an entry is pre_em, the LPA index is replaced with the entry in the table to create the

appropriate CVA. Note that this type of remapping operation is very standard and can be
carried out efficiently and at high speeds. When the PE initially enters a GVA into the table, it
alse stores some additional information. These include local routing information and,

optionally, data type information. The routing information is used locally to determine the
output liaes on the communication card to which the global word packet will be routed (see
discussion in following section).

The GVA is then used as an index into a second map table to determine if the corresponding

global virtual page has been locked If a lock is found, the global write is terminated and an
interrupt is generated back to the PE (note that the PE can also read the lock table to determine
status directly).

Assuming no lock is present, the GVA, with associated routing and type information, is
combined with the original data to form a global 'word packet'. By current design specs, the
packet would be about 128-bits long, consisting of 32-bits of virtual address, 64 bits of data,
and at least 32- bits of associated data. The additional data would include such information as

the ID of PE, hopcount, data type information, and various status bits. The routing infor-
mation is also associated with, but not part of, the 'word packet', since it will be lost in the
next stage. The global word packet then moves to a FIFO buffer for transmission to other PEs
in the next stage of operation.

1990008050-008

Receiving global information from other processors is essentially the reverse of the above

procedure, albeit somewhat simpler. When a word packet, involving data shared by thepr_essor, is rec_eived,communication interface routes the information to the input channel of
the communication card. As shown in figure 3, the packet is split into address and data lines
and the GVA is used as an index into a lock table. If the global page is unlocked, or if the

writer has the key, the GVA is passed to the Input Map.

Again the GVA is used as an index into a u'anslation table. If there is no corresponding entry
in the table the write is killed, even though it was specifically routed here and passed through
the lock check. This is an important since it gives each PE absolute control of it's own

environment and security. Only the local PE can place (or remove) entries in it's associated
Input Map. 'l"hus no outside operation can access the PE's local memory without prior
approval of the PE (by establishing a shared region).

If an entry is present, the GVA is replaced with the corresponding LPA from the table and the
address and data lines are merged. The address re.placement guarantees that an external store

operation is completely confined to the local memory region allocated by the PE. The local
address and data is then _ent to a FIFO to be stored in the local memory as rapidly as possible.

The manner in which the local memory is physically accessed is, of course, derarmined by the
individual PE architecture. If the memory is dual ported, for example, the external writes

would simply access a second port. Alternatively, an arbitration circuit migiat be necessary to
permit the external writes to occur when the memory bus was available (see also Section 3.4,
Flow Control). If the PE is a cache based architecture, it would also be necessary to invalidate

any cache lines containing the same address.

3.3 InterconnectionSystem

The second stage of a processor's communication card is actually a node in the interconnection
system. It shovld again be stressed that, in order to conform to the conceptual model, the
nature of the interconnection (e.g. single bus, multiple bus, point-to-point mesh, etc.) is

immaterial to the programming. Although performance may vary, a program wtit:en for a
Merlin environment will execute on any other Merlin system, even if the interconnection
network is totally different

With this caveat, the interconnection system selected for the prototype study i.¢an N-

dimensional mesh. Initially this will be a 2-dimensional toroidal mesh so that ezch PE will be
directly connected to four others. Each connections is designed as unidirectional, point-to-
point interconnect; _o that each communication node would have four exte:nal input and four
external output channels, coupled in pairs to neighboring processors. The fact that the
connectivity may be varied relativity independently of the rest of the system (e.g. to support
more traffic or a larger system) is a significant advantage of the Merlin design.

The interconnection ch_nels are illustrated by the large arrows at the tight side of figure 3.

Each input channel has associated with it a FIFO (for buffeting) and a routing map. The

m

1990008050-009

muting maps are tables, indexed by GVAs, which contain a bit mask definLngthe local routing
path for the corresponding GVA. Assume, for example, there are six exit channels (two
internal and 4 external channels, as shown). Each entry in the routing table would then be 6

bits long, with each bit corresponding to a exit channel. An entry of001111 would therefore
indicate that the global word packet should be broadcast on all four of the external channels.

Note that the path of a global data word is determined by its GVA and the entry in the routing
table of each node through which it passes. It is not carried with the data. The path or virtual
circuit between any two processors sharing the same virtual address space is therefore
established by the system at the time the shared region is created. Under normal circumstances
(baring system problems), these paths remain fixed tbr the life of the shared region. The paths
are created by the PEs entering the necessary routing information in the routing table
corresponding to the appropriate incoming channel.

In order to be able to maintain a weak form of data consistency, it is important that the
interconnection system guarantee that the order in which information is stored by any
processor will be the order in which it is received by all participating processors.

Other processors can easily be added to an established shared region by simply creating a path
from the nearest PE which already contains the region. Similarly, failed or otherwise occupied
processors can simply be routed around without user involvement. This capability also has
important debugging ar,_lications. A shared region may be mapped into a previously
uninvolved PE for debugging purposes. If selected carefully, the presence of this debugging
_?Ewill not change the characteristics of the system under study, and can be used to perform
realtirne analysis of shared memory activity.

3,4 Flow Control

There are three units which govern the dynamics of information flow in the system: the
crossbar switches (one per PE); FIFO buffers (-7 per PE), and the PEs themselves. The
crossbar, shown in figure 3, is designed as a round robin, multipass switch. Essentially this
means that each of N input channels is guaranteed access to the switch every Nth cycle. Within
each cycle, however, any output channels not needed by the primary requester will _e utilized
to satisfy the requests of other active channels. The only requirement is that no input channel
will be permitted switch access unless all of it's output needs can be met simultaneously (i.e.
no partial firing).

Because of the dynamics of the switch and the system itself, it is obvious that buffers must be
available on each communication channel to facilitate flow control and to handle lransient hot

spots. Figure 3 shows a number of FIFO buffers in the layout of each PE's communication
card. Essentially there is a separate buffer on each input line to the crossbar switch and one to
buffer external writes to the PE's local memory. In a system connected as a 2-D toroidal mesh,
there would be 7 buffers associated with each PE. The optimal size of these buffers are
currently being investigated by simulations, but is probably on the order of 1K words each.

1990008050-010

Although the FIFO buffers should be able to smooth out normal dynamics of the system and
• ++ IIUL _J,/UL_I I_UWJt_I It_l_V_lUJ/ _Jld_]/1_'lllO+lJdl tkJ_anole transients, it is possible that more serious " 1.+,4.... 1.,., fA...... I,.....

inappropriate ,outing) or that the s-,stem could be over driven by a particular program. Figure
3 illusu'ate_,,that every FIFO is equipped with a status line signalling a half full condition. All
but one of ahese lines arc connected to the crossbar switch's control logic. In the case of the

two L,,_rnal, output channels (to the Input Map and Lock Processor) these status lines will
inhibit the crossbar's control unit from permitting access to these channels until the half full

signalisremoved.

The FIFOs associated with externally connected channels operate a little differently. When the

FIFO of any channel signals the crossbar switch, the switch immediately sends an inhibit
signal on the external line connected to the same PE which is transnfitfing to the half full buffer.
This signal is stripped off by the transmitting processor's receiver (not shown) and
immediately sent to the crossbar control unit on that PE. This signal inhibits the sender's
crossbar from transmitting more data over the congested channel until further notice (i.e. it's
FIFO is less than half full).

The system, thus far, has gracefully handled the heavy loading, filling FIFOs, temporarily
closing communication channels, and generally allowing the problem to propogate, from node
to node, to buffers downstream, and ultimately to the source(s). No PE has actually yet been
effected, and, if the activity is transitory (i.e. burst), equilibrium will automatically be
reestablished without any PE involvement.

At some point, if the heavy traffic continues, a crossbar switch somewhere in the network will
be forced to block the input line from it's local, transmitting PE (see figure 3). When this

happens, the FIFO assoc.iated with this line will begin to fill. When it reaches half full it wizl
send an inter- rupt to the local PE itself. This interrupt signal will cause acontext switch to the

operating system, whicl, will stop the active process from fur,her transmissic,ns. The PE's
operating system may respond to such an interrupt in a variety of ways: wait until the condition
has resolved itself (i.e. the interrupt goes away); execute a different task; investigate the
problem (via communication with other PE's over an independent ethernet cormection); notify
(if the software exists) the transmitting task; notify the user; or, in bad situations, move

processes t,_ different PEs or attempt to reroute the virtual circuit. The system managment
issues in such situations are the subject of continuing research.

Simulations of deliberately over driven systems have shown that the hot spots tend to occur at
the interface to a PE's memory (i.e. a memory bandwidth limitation) and not within the

network. This simply implys that, under worst case conditions, one PE is capable of writing
intormation faster than another PE can absorb it. While it is hoped that such situations will be

avoided by users, it is importan: to understand that they arc not necessarily bad.

It is not unusual in mulriprocessing systems, both message based and shared memory, for a PE

to be temporarily blocked while access to information is being acquired. In a Merlin system,
even if a PE is interrupted, the transmission of data and it's storage in memory is occurring in

1990008050-011

parallel, as rapidly as possible, throughout the network. To look at the probler., differently, if
a user rapidly generates large amounts of shared data, the performance of the system may be
limited by the memory bandwidths of ale PEs. A :,,tedin system would transfer data to all the
processes at memory bandwidth speeds, which, given the basic problem definition, is as
efficiently as it can be executed.

4. Synchronization

Synchronization is basically an algorithmic problem, not e, architectural one. It is also true
:lat a particular ,,-"_,,llelarchitecture can make synchronization difficult and thereby significantly

slow down the performance of the system. The need for synchronization, however, is a result
of the approach taken to solve the problem. The _exluirement for frequent synchronization will
adversely effect the performance of a problem on any parallel architecture. Merlin offers a
number of methods of dealing with synchronization requirements, ranging from self-
synchronized messages, to global memory locks, to semaphores, to test-and-set operations, to
the technique of phased synchronization.

4.1 Locks, Semaphores, etc.

Since global virtual memory does not exist, it's size is only limited by the size of the address
lines in the network. In the Merlin prototype currently under design, this is 32-bi::, with
provisions for expansion. To facilitate inter-system communication and global memory
management, the operating system reserves, at boot time, several pages of the global virtual
address space for each PE in the network.

One such n_gion is utilized for OS to OS communication. At start up rime the system creates
virtual circuits (routing paths) between each PE and the reserved OS page of every other PE
(i.e. it creates a spanning tree rooted on each PE and covering all nodes). In a similar fashion,
other dra:licatedregions are established on each PE to handle interprocessor interrvpts, memory
locks, and fetch and add operations.

Figure 3 shows a special routing circuit on each communication card for handling such
operations. This consists of an interrupt handler, a lock processor, and a fifo-buffered return
channel to the crossbar switch. One PE can interrum another, for example, by writing to the
GVA reserved for ",hatPE's interrupt region This write is muted to the interrupt h,_ndleron the
selected PE, which in turn actually interrupts the processor (and also supplies the 11)of the
interrupting PE, and a 64 bit status word).

M,.m_,:_r'.:'locks are handed in a somewhat similar fashion. If a region requires a lock, a request
to establish one must be made to the system, and a lock address (and lockmaster) is allocated.
To acquire a lock, a PE simply writes to the appropriate global virtual lock address. The lock
handler on the lockmaster processes the request and returns the result to the sender. If the
request is granted, a write is first initiated to the global region involved (and hence to all PEs
sharing this region). Special status bits are set in this write which are intercepted by the lock

1990008050-012

checker (figure 3) on each associated FE. The lock checker recognizes this write as a 'lock
set', marks the region locked (for both input and output), ar,d stores the 'key' or I]3 of the lock
owner. The local PE is not involved in any of these opez_.tions.

Each lock processor is also designed to support a primitive fetch-and-add type of capability
within it's own special memory. A fetch-and-add location is requested and assigned by the
system. A variable can then be stored in the location. Writes to this location by any PE will
cause the lock processor to return the current value of the variable to the PE, and add the value
written to the variable. This is carried out in one cycle and useful for such functions as queue

management, etc.

4.2 Phased Synchronization

Phased synchronization is an method of handling interdependent parallel operations in an
quasi-asynchronous, overlapped fashion. The approach is often quite successful in eliminating
synchronization barriers and other bottlenecks to efficient parallel operation [13]. A limited
type of phased _ynchronization was supported in hardware on the Alliant Computer FX/8 [14].
In this case, interdependent loop computations were identified by the compiler and the
associated memory references tagged. Processors could then execute independent loop
segments until a tagged, or dependent location was encountered. The process was then halted
until the necessary value was stored by another processor.

The approach taken by Alliant, while serving as an example, was restrictive and not scalable.
Generally speaking, for phased synchronization to be practical it is necessary that the
supporting architecture be capable of frequently broadcasting small amounts of information
throughout the system with minimal overhead and latency. This can be illustrated by the
simple example in figure 4.

Figure 4A shows a small serial fortran code with a loop containir,g an interelement dependency
(y(i+ 1) cannot be computed vntil x(i) is calculated) and requiring the computation of an in-
order summation (perhaps for reproducibility due to possible round-off errors). Such a

program would typically not be amenable to parallel processing Figure 4B, however,
illustrates how the problem can be run in parallel by utilizing a phased synchronization
approach.

The program is first separated into independent and dependent phases. The depev,dent code,
shown on the right in figure 4B, contains the essentially serial portion of the computation. The
remaining independent code is, by construction, now parallelizable. The 'N' executions of the
loop is now spread over 'P' processors as shown. In order share the results of the parallel
computation, a shared common block called 'ALL' is created, containing the arrays X and Y
where the computational results are stored. In this example the region ALL is defined as a
globally shared region prior to the execution of the programs. Figure 4B illustrates how
computational results are then simultaneously transmitted and stored, word-at-a-time, in the

local memories of the processors.

1990008050-013

1990008050-014

The dependent computation can not, however, procer ,t until the necessary information is
available from other processors_(not unlike a macro_opic form of data flow). To provide this
information, an array named 'INDX' was created and added to the globally shared region.

Each entry in this array corresponds to a value for the loop index T in each of the P
processors. Note that the processors store the current value of this index after computing each
value of X(I). As shown in figure 4B, the processor executing the dependent code is

continually receiving values of X and INDX from the parallel computations.

Since the dependent code needs to exe..ute the loop sequentially, it is necessary to test to verify

the presence of the next X value in its local memory or to wait for its arrival. This process is
thus executing in a phased manner, synchronizing at each step with the parallel computation.
Even though the dependent process can not begin execution until after X(!) is available and
cannot end until XfN) is received, most of the serial computation is overlapped with the parallel

computation and executed concurrently

This approach requires no formal locks or messages (in the traditional sense), is extremely
efficient, and can easily be adapted to handle a wide variety of other situations in which parallel

processing is difficult [13] (e.g. conditional branches, load balancing, queuing, etc.). Phased
synchronization operates on the principal that if processes can determine, from moment to
moment, the status of information in the system, dependent computations can often be safely

overlapped with other computations, thus breaking many traditional parallel r_rocessing
barriers.

5. Summary

Merlin provides a very high performance 'anticipatory' (as opposed to a 'derr_nd') approach to
sharing memory in multicomputer environments. It provides a programming model which
supports both local and dynamically created shared memory. The system eliminates all
software involvement in the actual sharing of information, and yet permits shared memory

regions to be created between between any set of cooperating processes. Communication
latency between processors is minimized, and essentially eliminated, due to the automatic
instruction-level overlap of communication and computation.

The Merlin approach can also be used, in the future, to support heterogeneous multicomputer
systems (e.g. micros, mainframes, vector, systolic, database, AI, etc.). It would permit
processors either to be utilized independently or, as needed, to be welded together into
cohesive subsystems.

The programming flexibility of the system, it's utilization of high-level languages (including
mixed language support), and the topology-independent nature of it's operation, should
provide users with a versatile, high-performance system that can be logically programmed to
match individual application requirements. The ability of a system to rapidly and efficiently
disseminate single words of information, permit the use of phased synchronization techniques
which, in turn, open up new approaches to parallel problem decomposition in a multiprocessor

1990008050-015

environment.

Investigations into system design issues are continuing. Simulations are being used to examine

routing algorithms and to study network traffic patterns and behavior under heavy loading.

Operating system and language extensions, to support the operation of global virtual memory.,

are also being developed, together with parallel debugging tools.

1990008050-016

REFERENCES

[1.] J. Edler, A. Gottlieb, C. P. Kruskal, K. P. McAuliffe, L. Randolh, M. Snir, P. J. Teller
and J. Wilson, "Issues Related to MIMD Shared-Memory Computers: The NYU
Ulu'acomputer Approach", IEEE Proc. 12th Intl. Symposium on Computer Arch.,
Boston, MA, June 1985, 126-135.

[2.] G.F. Pfister, W. C. Brantley and D. A. G_rge, 1"he IBM Resear_-hParallel Processor
Prototype (RP3): Introduction and Architecture", Proc. 1985 Int. Conf., on Parallel
Processing, 1985, 764-771

[3.] D. J. Kuck, E. S. Davidson, D. H. Lawrie and Ahmed H. Sameh, "Parallel
Supercomputing Today and the Cedar Project", Science, 231, (28 Feb, 1986), 967-974.

[4.] C.L. Seitz, 'l'he Cosmic Cube", Commun. Assoc. Computing Mach., 28, 1985, 22-
33.

[5.] L.-Felipe, E. Hunter, M. J. Karels and D. A. Mosher, "User-Process Communication
Performance in Networks of Computers", IEEE Transactions on Software Engineering
14, 1, (January 1988), 38-53.

[6.] Geoffrey C. Fox, "Concurrent Processing for Scientific Calculations", COMPCON 84,
San Francisco, CA, February, 1984, 70-73.

[7.] W. Crowther, J. Goodhue, E. Starr, R. Thomas, W. Milliken and T. Blackadar,
"Performance Measurements on a 128-Node Butterfly Parallel Processor", Proc. of the
Int. Conf. on Parallel Processing, August, 1985, 531-540.

[8.] B.J. Smith, "A Pipelined Shared Resource MIMD Computer", Proc. 1978 Int. Conf.
on Parallel Processing, 1978, 6-8

[9.] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz, "An Evaluation of Directory
Schemes for Cache Coherence", 15th Intl. Symposium on Computer Architecture,
1988.

[10] E. A. Amould, J. Bitz, E. C. Copper, H. T. Kung, R. D. Sansom and P. A. Steenkiste,
"The Design of Nectar: A Network Backplane for Hetrogeneous Multicomputers", Proc.
3rd Int. Conf. Arch. Support for Prog. Lang. and Op. Sys. (ASPLOS III), Boston,
MA, April, 1989.

[11.] Christopher Wilks, "SCI-Clone/32 - A Distributed Real Time Simulation System",
Computing in High Energy Physics, edited by Hertzberger and Hoogland, North-
Holland Press, 1986, 416-422.

[12.] Larry D. Wittie and Creve Maples, "Merlin: Massively Parallel Hetrogeneous
Computing" Proc. 1989 Int. Conf. on Paradel Processing, St. Charles, Illinois, August
1989, 142-150.

[13.] Creve Maples, "Phased Synchronization and Parallel Computing", to be published.
[14.] Robert Perron and Craig Monday, "Architecture of the Alliant FX/8", Digest of Papers

for COMPCON '86, March, 1986, 390-393.

1990008050-017

